Members
Overall Objectives
Research Program
Application Domains
New Software and Platforms
New Results
Bilateral Contracts and Grants with Industry
Partnerships and Cooperations
Dissemination
Bibliography
XML PDF e-pub
PDF e-Pub


Section: Application Domains

Cognitive neuroscience

Macroscopic Functional cartography with functional Magnetic Resonance Imaging (fMRI)

The brain as a highly structured organ, with both functional specialization and a complex newtork organization. While most of the knowledge historically comes from lesion studies and animal electophysiological recordings, the development of non-invasive imaging modalities, such as fMRI, has made it possible to study routinely high-level cognition in humans since the early 90's. This has opened major questions on the interplay between mind and brain , such as: How is the function of cortical territories constrained by anatomy (connectivity) ? How to assess the specificity of brain regions ? How can one characterize reliably inter-subject differences ?

Analysis of brain Connectivity

Functional connectivity is defined as the interaction structure that is underlies brain function. Since the beginning of fMRI, it has been observed that remote regions sustain high correlation in their spontaneous activity, i.e. in the absence of a driving task. This means that the signals observed during resting-state define a signature of the connectivity of brain regions. The main interest of retsing-state fMRI is that it provides easy-to-acquire functional markers that have recently been proved to be very powerful for population studies.

Modeling of brain processes (MEG)

While fMRI has been very useful in defining the function of regions at the mm scale, Magneto-encephalography (MEG) provides the other piece of the puzzle, namely temporal dynamics of brain activity, at the ms scale. MEG is also non-invasive. It makes it possible to keep track of precise schedule of mental operations and their interactions. It also opens the way toward a study of the rythmic activity of the brain. On the other hand, the localization of brain activity with MEG entails the solution of a hard inverse problem.